Data—Categorical OR Quantitative (Numerical) Categorical Data—Nominal OR Ordinal Quantitative Data—Continuous OR Discrete

Normal Distribution-68% values lie within the range Mean +/- 1SD 95% values lie within the range Mean +/- 2 SD 99.7% values lie within the range Mean +/- 3 SD

To test whether data is normally distributed → Kolmogorov-Smirnov test

Variance= Σ (X-x)²/n-1 where X=variable value, x=mean, n=number of variable

Standard deviation (σ) is the square root of variance. SD is a measure of variance, does not depend on sample size in its magnitude but does so for accuracy.

Coefficient of Variation \rightarrow for repeated measurements of a given parameter

Standard Error of Mean =SD/ **sq root n.** SE M is a measure of the precision of an estimate, decreases in magnitude as the sample size increases.

Type I error (alpha) \rightarrow to reject null hypothesis when it is in fact true \rightarrow set at 5% **Type II error (beta)** \rightarrow to accept null hypothesis when it is in fact false \rightarrow set at 20%

Power of a study= $1-\beta$

 $N=16\sigma^2/d^2$

Where σ = SD & d=expected difference

Paired tests of significance are necessary for paired samples as each subject acts as its own control and the variability between subjects is removed

Chi Square (χ^2) **Test** \rightarrow by default are 2-sided; carried out on actual numbers, rather than on derived statistics (%, ratio, proportion). Use 2x2 contingency tables for quick analysis.

When numbers analysed are small (eg if the total <100 or any one cell <10), then either one should apply Yates' correction OR apply Fischer's exact t test. Fischer's t Test will have 2 p values-conventional, corresponding to χ^2 test without Yates' correction and midp value, which corresponds to the value of p obtained using χ^2 test with the correction.

McNemar's test \rightarrow for paired nominal data. It is a variant of χ^2 test.

Quantitative / Ordinal Non-parametricData→ if paired→ use Wilcoxon signed ranks test

If unpaired \rightarrow use Mann Whitney U test

Correlation \rightarrow association between 2 quantitative variables **Regression** \rightarrow estimation of best straight line to summarise the association **Correlation analysis for non-parametric data** \rightarrow Spearman's Rank Correlation Coefficient (r_s)

Correlation analysis for parametric data \rightarrow Pearson's Correlation Coefficient (r). Values between -1 and +1 depending on direction of correlation. Value of 0 means there is no correlation

Graphical plotting regression \rightarrow use the dependant variable as the ordinate (Y-axis) and the independent variable as the abcissa (X-axis)

To test whether association is merely apparent and might have arisen by chance \rightarrow t test

Regression \rightarrow average value of y (dependent) is a function of x (independent)

Regression equation \rightarrow y= α + β x

Regression coefficient $\rightarrow \beta$

Survival analysis \rightarrow studying time between entry to a study and a subsequent event

Kaplan Meyer survival curve

Log Rank test \rightarrow To compare 2 survival curves. Assumes that data are ordinal/ continuous and that risk of an event in one group relative to the other does not change with time

SIGNIFICANCE TESTS FOR PAIRED OBSERVATIONS

Nominal→ McNemar's test Ordinal→ Wilcoxon signed ranks test Quantitative (non-parametric) → Wilcoxon signed ranks test Quantitative (parametric)→ Paired t test

SIGNIFICANCE TESTS FOR UNPAIRED OBSERVATIONS (2)

Nominal $\rightarrow \chi^2$ / Fischer's test Ordinal $\rightarrow \chi^2$ / Mann-Whitney U test Quantitative discrete \rightarrow Mann-Whitney U test Quantitative non-parametric \rightarrow Mann-Whitney U test/ Log rank test Quantitative parametric \rightarrow Student t test

SIGNIFICANCE TESTS FOR > 2UNPAIRED OBSERVATIONS

Ordinal/ Quantitative Discrete/ Quantitative Nonparametric→ Kruskall-Wallis test Quantitative parametric→ One way ANOVA (Analysis of Variance)

Nominal data:

Paired \rightarrow McNemar's test Unpaired $\rightarrow \chi^2$ / Fischer's test

Ordinal data:

Paired \rightarrow Wilcoxon signed ranks test test Unpaired $\rightarrow \chi^2$ / Mann-Whitney U test

Quantitative data (Non-parametric) : Paired→ Wilcoxon signed ranks test test Unpaired→ Mann-Whitney U test

Quantitative data (Parametric) :

Paired \rightarrow Paired t test Unpaired \rightarrow Independent t test

Quantitative data (paired) :

Parametric \rightarrow Paired t test Non-parametric \rightarrow Wilcoxon signed ranks test test

Quantitative data (unpaired) :

Parametric \rightarrow Independant t test Non-parametric \rightarrow Mann-Whitney U test